
Chemistry 3830

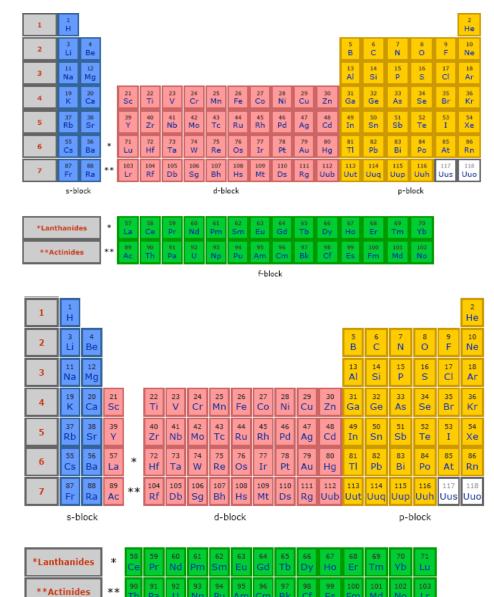
Periodic Table and Atomic Structure

Periodic Table of the Elements

By Sandbh - Own work, CC BY-SA 4.0, ttps://commons.wikimedia.org/w/index.php?curid=55055463

Main group	s block	p block
Transition Metals	d block	
Lanthanides and Actanides	f block	

Periodic Table of the Elements


2 Li Be 3 11 Na 12 Mg 4 19 K 20 Ca 21 22 Sc 21 Ti 22 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Ba 5 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Ru 46 Ru 47 Rb 48 Rd 49 Sn 50 Sb 51 Sb 52 Te 53 Te 52 Te 53 Te 53 Te 54 Te 55 Sb 56 Te 77 Ta 78 W 79 Rb 70 Ta 80 Ta 81 Rb 82 Ta 83 Rb 84 Rb 85 Rb 85 Ta 85 Ta	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3		2	1	Group
1 H 2 3 4 Be 3 11 Na Be 3 11 Na 12 Mg 4 19 K 20 Ca 5 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Na 28 Cu 29 Su 30 Su 31 Su 32 Su 33 Su 34 Su 35 Su 36 Su 34 Su 35 Su 36 Su 31 Su 32 Su 33 Su 34 Su 35 Su 36 Su 32 Su 33 Su 34 Su 35 Su																				Period
2 Li Be 3 11 Na 12 Mg 4 19 K 20 Ca 21 22 Sc 21 Ti 22 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Ba 5 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Ru 46 Ru 47 Rb 48 Rd 49 Sn 50 Sb 51 Sb 52 Te 53 Te 52 Te 53 Te 53 Te 54 Te 55 Sb 56 Te 77 Ta 78 W 79 Rb 70 Ta 80 Ta 81 Rb 82 Ta 83 Rb 84 Rb 85 Rb 85 Ta 85 Ta	2 He																	1		
3 Na Mg 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 5 37 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 57 76 77 78 79 80 81 82 83 84 85 84 6 55 56 56 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 84 6 55 56 56 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 84 85 86 81 86 81 86 81 86 86 86 86 86 86	10 Ne	9 F		· ·																2
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Bi 5 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rb 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 In 6 55 Cs 56 Ba * 71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 In 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 Ad	18 Ar	17 Cl																		3
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 6 55 56 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 6 S5 56 Ba 102 104 105 106 107 108 109 110 111 112 113 114 115 115 116 111	36 Kr	35 Br											24 Cr							4
6 Cs Ba * Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po Ai 82 88 102 105 105 107 108 100 110 111 112 112 116 115 116 111 112 112 116 115 116 111 112 112 116 115 116 111 112 112 116	S4 Xe	53 I																		5
87 88 103 104 105 106 107 108 109 110 111 112 113 114 115 116 11	86 Rn	85 At															*			6
7 **		117 Uus	116 Uuh	115 Uup	114 Uuq	113 Uut	112 Uub	111 Rg	110 Ds	109 Mt	108 Hs	107 Bh	106 Sg	105 Db	104 Rf	103 Lr	**	88 Ra	87 Fr	7
s-block d-block p-block			d-block p-block										ock	s-bl						
*Lanthanides * 57 58 59 60 61 62 63 64 65 66 67 68 69 70			70	69	6.8	67	66	65	64	63	62	61	60	59	58	57				

Lanthanides	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	
**Actinides	**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	

102 No

Three Different Periodic Tables

f-block

Es

Three Different Periodic Tables

1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	- 7 - N	8 0	9 F	¹⁰ Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	S4 Xe
6	55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 DS	111 Rg	Uub	ut Uut	114 Uuq	Uup	116 Uuh	117 Uus	118 Uuo
	s-bl	ock		d-block											p-b	lock		

*Lanthanides + 1	*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
**Actinides + 1	**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 E5	100 Fm	101 Md	102 No	103 Lr

f-block

Introduction to d and f-Block Chemistry

Abundances of the elements in the earth's crust:

% abundance	elements
>10	O, Si
10 ⁻¹	Al, Fe, Ca, Na, K, Mg
1-10 ⁻¹	H, Ti, Cl, P
10 ⁻¹ -10 ⁻²	Mn, F, Ba, Sr, S, C, N, Zr, V, Cr
10 ⁻² -10 ⁻³	Rb, Ni, Zn, Ce, Cu, Y, La, Nd, Co, Sc, Li, Nb, Ga, Pb, Th, B
10⁻³-10⁻⁴	Pr, Br, Sm, Gd, Ar, Yb, Cs, Dy, Hf, Er, Be, Xe, Ta, Sn, U, As, W, Mo, Ge, Ho, Eu
10 ⁻⁴ -10 ⁻⁵	Tb, I, Tl, Tm, Lu, Sb, <mark>Cd</mark> , Bi, In
10⁻⁵-10 ⁻⁶	Hg, <mark>Ag</mark> , Se, <mark>Ru</mark> , Te, Pd, Pt
10 ⁻⁶ -10 ⁻⁷	Rh, Os, Ne, He, Au, Re, Ir
10 ⁻⁷ -10 ⁻⁹	Kr
10 ⁻⁹ -10 ⁻²⁰	Ra, Pa, Ac, Po, Rn, Np, Pu, Pm
< 10 ⁻²⁰	Fr, At, transplutonium elements

Blue = 1st row TM, Red = 2nd row TM, Green = 3rd row TM

In general, 1st row TMs are more abundant than 2nd or 3rd row TMs.

Introduction to d and f-Block Chemistry

Mineral sources and methods of recovery for some commercially important d-block metals:

Metal	Principal minerals	Method of recovery	
Titanium	Ilmenite, FeTiO ₃ Rutile, TiO ₂	$TiO_2 + 2C + 2Cl_2 \rightarrow TiCl_4 + 2CO$ followed by reduction of $TiCl_4$ with Na or Mg	
Vanadium	Vanadinite, Pb ₅ (VO ₄) ₃ Cl		
Chromium	Chromite, FeCr ₂ O ₄	$FeCr_2O_4 + 4C \rightarrow Fe + 2Cr + 4CO$	
Molybdenum	Molybdenite, MoS ₂	$2MoS_2 + 7O_2 \rightarrow 2MoO_3 + 4SO_2$ followed by either: $MoO_3 + 2Fe \rightarrow Mo + Fe_2O_3 \text{ or}$ $MoO_3 + 3H_2 \rightarrow Mo + 3H_2O$	
Tungsten	Scheelite, CaWO ₄ Wolfamite, FeMn(WO ₄) ₂	CaWO ₄ + 2HCl \rightarrow WO ₃ + CaCl ₂ + H ₂ O followed by 2WO ₃ + 6H ₂ \rightarrow 2W + 6H ₂ O	
Manganese	Pyrolusite, MnO ₂	$MnO_2 + C \rightarrow Mn + CO_2$	
Iron	Hematite, Fe ₂ O ₃ Magnetite, Fe ₃ O ₄ Limonite, FeO(OH)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	
Cobalt	Cobaltite, CoAsS Smaltite, CoAs ₂ Linnaeite, Co ₃ S ₄	byproduct of copper and nickel production	
Nickel	Pentlandite, (Fe,Ni) ₆ S ₈	$2NiS + 2O_2 \rightarrow 2Ni + 2SO_2$	
Copper	Chalcopyrite, CuFeS ₂ Chalcocite, Cu ₂ S	$2CuFeS_2 + 2SiO_2 + 5O_2 \rightarrow 2Cu + 2FeSiO_3 + 4SO_2$	

• Oxides preferred for 1st row and early TMs

Sulfides preferred for 2nd/3rd row and late TMs

Atomic Structure

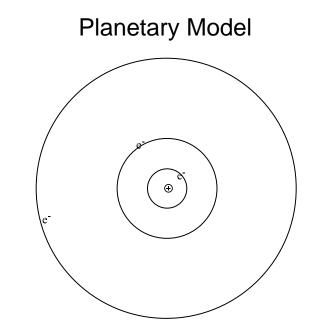
Atoms consist of

- (i) a nucleus (containing protons and neutrons)
- (ii) Electron shell

(i) Nucleus:

Positively charged (because of protons) Very small, 10^{-15} m = 1 fm Number of protons define the element

(ii) Electron shell:

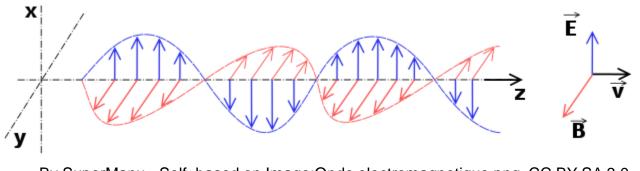

Negatively charged (because of electrons)

Electron shell will define the size of the atom $(10^{-10} \text{ m} = 100 \text{ pm} = 1 \text{ Å})$

- Electrons are extremely small (estimated as 10⁻¹⁸ m)
- Atoms are mainly empty space!

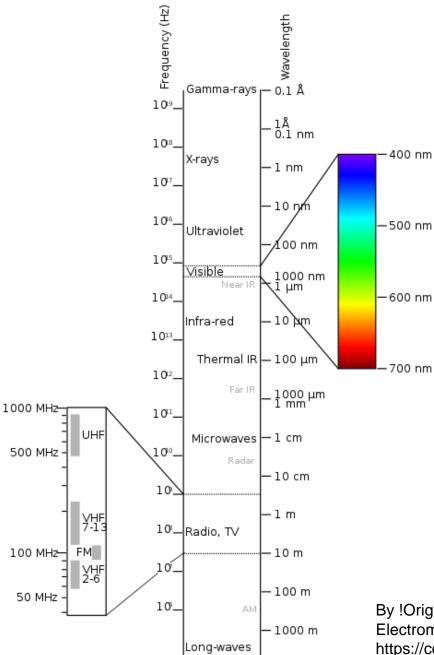
In chemistry (NOT nuclear chemistry),

only electrons are involved in chemical reactions


Electronic Structure of an Atom

How can we study the electronic structure of the atom?

Answer: Through interaction of electromagnetic radiation with matter!


What is electromagnetic radiation?

Electric and magnetic components (mathematical description: Maxwell's equations)

By SuperManu - Self, based on Image:Onde electromagnetique.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2107870

Electromagnetic radiation

Speed of light = $c = \lambda v$ Units: $\frac{m}{s} = m \times \frac{1}{s} \lambda v$

By !Original: PenubagVector: Victor Blacus - Own work based on: Electromagnetic-Spectrum.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22428451

Wave Particle Duality of Electromagnetic Radiation

wave

particle

Wavelength and frequency

 $c = \lambda v$

c = speed of light in the vacuum = $2.997925 \times 10^8 \text{ m/s}$

Diffraction experiment for example: X-ray crystallography Photon of a particular energy

Energy of a photon: E = hv

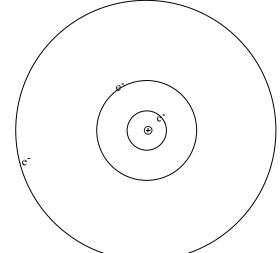
h = Planck's constant = $6.62607 \times 10^{-34} \text{ Js}$

Photoelectric effect (Einstein)

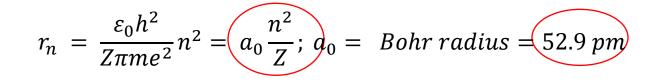
Absorption and emission spectra

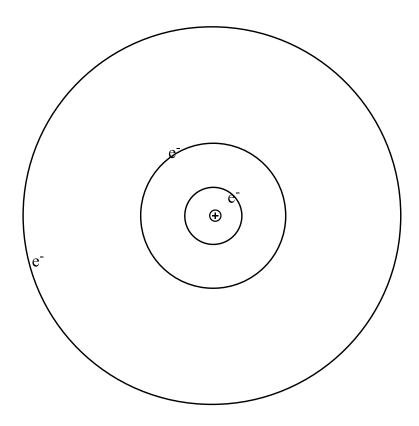
Bohr Model of the Atom

Two postulates:


- (i) In the absence of radiation absorption or emission, electrons stay in a stationary state.
- (ii) Absorption occurs only in discrete amounts, corresponding to a change in energy between two stationary states of the electron.

Electronic energies are quantized (n = principle quantum number)


Energy of an electron in the state n:


$$E_n = -\frac{m_e e^4}{8\varepsilon_0^2 h^2} \left(\frac{Z^2}{n^2}\right) = -R_H \left(\frac{Z^2}{n^2}\right), R_H = 2.149 \times 10^{-18} J$$

$$|E_n - E_m| = h\nu = \frac{Z^2 m_e e^4}{8\varepsilon_0^2 h^2} \left(\frac{1}{n_n^2} - \frac{1}{n_m^2}\right)$$

Bohr Model of the Atom

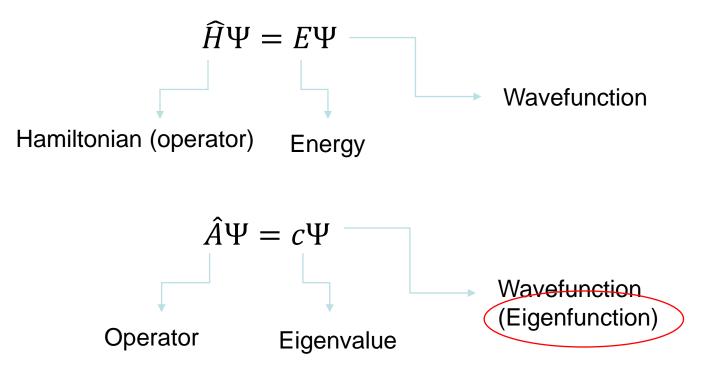
Wave Particle Duality of Subatomic Particles

particle wave ? Electrons, protons, neutrons Certain mass and size Diffraction experiment for example: neutron or electron diffraction De Broglie equation h $\frac{h}{p}$ mv

Wavelength of electrons (and neutrons, protons and any matter)

Diffraction Experiment

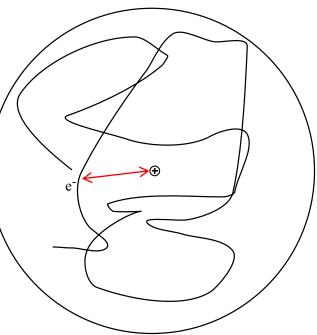
Light can be diffracted using a grid or a lattice (crystal lattice in X-ray crystallography)


A diffraction experiment is using the wave description.

Particles (neutrons and electrons) can be diffracted.

Electron diffraction through a sheet of crystalline aluminium (historic experiment)

The Schröderinger Wave Equation


Electronic Wavefunctions?

We want to know the electronic wavefunctions

 $\widehat{H}\Psi = E\Psi$

We can describe the Hamiltonian (energy) operator

Kinetic energy of nucleus Kinetic energy of electron Potential energy: Electron-nucleus attraction

We need to "solve Schrödinger's equation" to get the allowed wavefunctions

Spherical Polar Coordinate System

Spherical polar coordinates

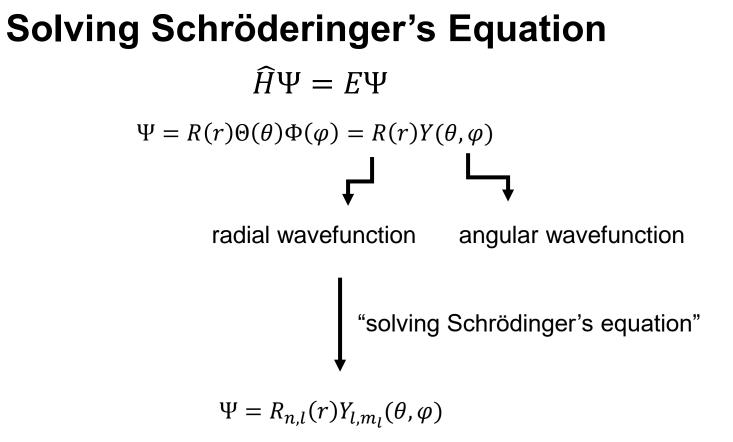
r is the radius

 $\boldsymbol{\theta}$ is the colatitude

 $\boldsymbol{\varphi}$ is the azimuth

In this coordinate system, the equation describing a spherical surface is simply $f(r, \theta, \phi) = r$

i.e., if r = 3, a sphere of radius 3


Solving Schröderinger's Equation

 $\widehat{H}\Psi = E\Psi$

 Conversion from Cartesian Coordinates (xyz) to Spherical Polar Coordinates (r, θ {theta}, φ{phi})

2. Separation of variables, three different subfunctions:

 $\Psi = R(r)\Theta(\theta)\Phi(\varphi)$ "solving Schrödinger's equation" $\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{8\pi^2m}{h^2} + \left(E + \frac{Ze^2}{4\pi\epsilon_0 r}\right)r^2 = u \quad (R \text{ subfunction})$ $\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) - \frac{v^2}{\sin^2\theta} + u\Theta = 0 \quad (\Theta \text{ subfunction})$ $\frac{1}{\Phi} \frac{d^2}{d\omega^2} = -v^2 \quad (\Phi \text{ subfunction})$ Quantum numbers: u = l(l+1); $v = m_l$

Only certain wavefunctions are allowed! Only certain quantum numbers are allowed!

n = principle quantum number (information about the shell, information about energy)<math>n = 1, 2, 3, 4,

0	$n = \infty$ $n = 5 l = 0$ $n = 4 l = 0$	$\boxed{l=1}$ $l=1$ $l=1$	$ \boxed{ \boxed$	$\boxed{} \boxed{} $	etc
	n=3 $l=0$	l = 1	l=2		
E N E R G Y	$n = \overline{2} l = 0$ $n = \overline{1}$	l = 1 The ener	gy levels of the orbit:	als of the hydrogen atom	

angular momentum of an electron in an orbital: $\hat{L}^2 \Psi = l(l+1)\hbar^2 \Psi$

$$|L| = \sqrt{l(l+1)}\hbar$$

Orbital names assigned to values of l

l	0	1	2	3	4	5
orbital label	S	р	d	f	g	h
	(sharp)	(principal)	(diffuse)	(fundamental)		

 $m_l = \underline{magnetic\ quantum\ number\ (information\ about\ the\ orientation\ of\ the\ orbital, or\ the\ z-component\ of\ the\ angular\ momentum)} m_l = 0, \pm 1, \pm 2, \pm 3, \ \dots \ \pm l$

z-component of the angular momentum of an orbital: $\hat{L}_z \Psi = m_l \hbar \Psi$

$$\Psi = R_{n,l}(r)Y_{l,m_l}(\theta,\varphi)$$

$m_s =$ <u>electron spin quantum number</u>

Orbitals defined by the quantum numbers n, I and \boldsymbol{m}_l may contain up to two electrons

Each of the electrons has a unique "electron spin" and is usually denoted as "spin up" \uparrow and "spin down" \downarrow

 $m_s = +\frac{1}{2}, -\frac{1}{2}$