Chemistry 3830

Periodic Table
and
Atomic Structure

Periodic Table of the Elements

Group

By Sandbh - Own work, CC BY-SA 4.0, ttps://commons.wikimedia.org/w/index.php?curid=55055463

Main group
Transition Metals
Lanthanides and Actanides
s block p block
d block
f block

Periodic Table of the Elements

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																			
1	$\begin{aligned} & 1 \\ & \mathrm{H} \end{aligned}$																		2 He
2	$\begin{gathered} 3 \\ \mathrm{Li} \end{gathered}$	$\begin{gathered} 4^{4} \\ \mathrm{Be} \end{gathered}$												S	$\begin{gathered} 6 \\ \mathrm{C} \end{gathered}$	$\begin{aligned} & 7 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{Ne} \end{aligned}$
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{gathered} 12 \\ \mathrm{Mg} \end{gathered}$												$\begin{aligned} & 13 \\ & \mathrm{Al} \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{gathered} 15 \\ \mathrm{P} \end{gathered}$	$\begin{gathered} 16 \\ \mathrm{~S} \end{gathered}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \end{aligned}$
4	$\begin{aligned} & 19 \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$		21 Sc	$\frac{22}{\mathrm{Ti}}$	$\begin{aligned} & 23 \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{gathered} 25 \\ \mathrm{Mn} \end{gathered}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{Co} \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{array}{r} 31 \\ \mathrm{Ga} \end{array}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & 33 \\ & \mathrm{As} \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathrm{Kr} \end{aligned}$
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$		$\begin{aligned} & 39 \\ & Y \end{aligned}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & \text { Mo } \end{aligned}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{aligned} & 45 \\ & \text { Rh } \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{gathered} 47 \\ \mathrm{Ag} \end{gathered}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & 51 \\ & S b \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ \mathrm{I} \end{gathered}$	$\begin{array}{r} 54 \\ \mathrm{Xe} \end{array}$
6	$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$	*	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$	$\begin{aligned} & 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 75 \\ & \operatorname{Re} \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & 77 \\ & \mathrm{Ir} \end{aligned}$	$\begin{aligned} & 78 \\ & \mathrm{Pt} \end{aligned}$	$\begin{gathered} 79 \\ \mathrm{Au} \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \end{gathered}$	$\begin{aligned} & 8_{1} \\ & \mathrm{Tl} \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 84 \\ & \mathrm{P}_{0} \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	$\begin{aligned} & 86 \\ & R n \end{aligned}$
7	$\begin{aligned} & 87 \\ & \mathrm{Fr} \end{aligned}$	$\begin{aligned} & \text { 8s } \\ & \text { Ra } \end{aligned}$	**	$\begin{aligned} & 103 \\ & \mathrm{Lr} \end{aligned}$	$\begin{aligned} & 104 \\ & R f \end{aligned}$	$\begin{aligned} & 105 \\ & \mathrm{Db} \end{aligned}$	$\begin{aligned} & 106 \\ & \mathrm{Sg} \end{aligned}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \end{aligned}$	$\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$	$\begin{aligned} & { }^{110} \\ & \text { Ds } \end{aligned}$	$\begin{aligned} & 111 \\ & \mathrm{Rg} \end{aligned}$	$\begin{gathered} 112 \\ \text { Uub } \end{gathered}$	$\begin{aligned} & 113 \\ & \text { Uut } \end{aligned}$	$\begin{aligned} & 114 \\ & \text { Uuq } \end{aligned}$	$\begin{gathered} 115 \\ \text { Uup } \end{gathered}$	$\begin{gathered} 116 \\ \text { Uuh } \end{gathered}$	$\begin{gathered} 117 \\ \text { Uus } \end{gathered}$	$\begin{gathered} 118 \\ \text { Uuo } \end{gathered}$
s-block			d-block p-block																

*Lanthanides	*	57 La	S8 Ce	59 Pr	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{gathered} 61 \\ \mathrm{Pm} \end{gathered}$	$\begin{gathered} 62 \\ \mathrm{Sm} \end{gathered}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{gathered} 64 \\ \text { Gd } \end{gathered}$	$\begin{aligned} & 65 \\ & \text { Tb } \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{gathered} 69 \\ T m \end{gathered}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$
**Actinides	**	$\begin{aligned} & 89 \\ & \mathrm{Ac} \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{gathered} 92 \\ \mathrm{U} \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	94 Pu	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	Cm	$\begin{aligned} & 97 \\ & \mathrm{Bk} \end{aligned}$	Cf	99 Es	100 Fm	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$

f-block

Three Different Periodic Tables

Three Different Periodic Tables

*Lanthanides + 1	*	La	$\begin{array}{r} 58 \\ \mathrm{Ce} \end{array}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{array}{r} 61 \\ \text { Pm } \end{array}$	$\begin{gathered} 62 \\ 5 m \end{gathered}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{aligned} & 64 \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{aligned} & { }^{69} \\ & \mathrm{Tm} \end{aligned}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$	$\begin{aligned} & \text { 71 } \\ & \mathrm{Lu} \end{aligned}$
**Actinides + 1	**	$\begin{aligned} & B 9 \\ & \text { Ac } \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & 92 \\ & U \end{aligned}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	$\begin{gathered} 96 \\ \mathrm{Cm} \end{gathered}$	$\begin{aligned} & 97 \\ & \text { Bk } \end{aligned}$	$\begin{aligned} & 98 \\ & \mathrm{Cf} \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$	103

Introduction to d and f-Block Chemistry

Abundances of the elements in the earth's crust:

\% abundance	elements
>10	O, Si
10^{-1}	$\mathrm{Al}, \mathrm{Fe}, \mathrm{Ca}, \mathrm{Na}, \mathrm{K}, \mathrm{Mg}$
$1-10^{-1}$	$\mathrm{H}, \mathrm{Ti}, \mathrm{Cl}, \mathrm{P}$
$10^{-1}-10^{-2}$	$\mathrm{Mn}, \mathrm{F}, \mathrm{Ba}, \mathrm{Sr}, \mathrm{S}, \mathrm{C}, \mathrm{N}, \mathrm{Zr}, \mathrm{V}, \mathrm{Cr}$
$10^{-2}-10^{-3}$	$\mathrm{Rb}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Ce}, \mathrm{Cu}, \mathrm{Y}, \mathrm{La}, \mathrm{Nd}, \mathrm{Co}, \mathrm{Sc}, \mathrm{Li}, \mathrm{Nb}, \mathrm{Ga}, \mathrm{Pb}, \mathrm{Th}, \mathrm{B}$
$10^{-3}-10^{-4}$	$\mathrm{Pr}, \mathrm{Br}, \mathrm{Sm}, \mathrm{Gd}, \mathrm{Ar}, \mathrm{Yb}, \mathrm{Cs}, \mathrm{Dy}, \mathrm{Hf}, \mathrm{Er}, \mathrm{Be}, \mathrm{Xe}, \mathrm{Ta}, \mathrm{Sn}, \mathrm{U}, \mathrm{As}, \mathrm{W}, \mathrm{Mo}, \mathrm{Ge}, \mathrm{Ho}, \mathrm{Eu}$
$10^{-4}-10^{-5}$	$\mathrm{~Tb}, \mathrm{I}, \mathrm{TI}, \mathrm{Tm}, \mathrm{Lu}, \mathrm{Sb}, \mathrm{Cd}, \mathrm{Bi}, \mathrm{In}$
$10^{-5}-10^{-6}$	$\mathrm{Hg}, \mathrm{Ag}, \mathrm{Se}, \mathrm{Ru}, \mathrm{Te}, \mathrm{Pd}, \mathrm{Pt}$
$10^{-6}-10^{-7}$	$\mathrm{Rh}, \mathrm{Os}, \mathrm{Ne}, \mathrm{He}, \mathrm{Au}, \mathrm{Re}, \mathrm{Ir}$
$10^{-7}-10^{-9}$	Kr
$10^{-9}-10^{-20}$	$\mathrm{Ra}, \mathrm{Pa}, \mathrm{Ac}, \mathrm{Po}, \mathrm{Rn}, \mathrm{Np}, \mathrm{Pu}, \mathrm{Pm}$
$<10^{-20}$	$\mathrm{Fr}, \mathrm{At}, \mathrm{transplutonium} \mathrm{elements}$

Blue = 1st row TM, Red = 2nd row TM, Green = 3rd row TM

- In general, $1^{\text {st }}$ row TMs are more abundant than $2^{\text {nd }}$ or $3^{\text {rd }}$ row TMs.

Introduction to d and f-Block Chemistry

Mineral sources and methods of recovery for some commercially important d-block metals:

Metal	Principal minerals	Method of recovery
Titanium	Ilmenite, FeTiO_{3} Rutile, TiO_{2}	$\mathrm{TiO}_{2}+2 \mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{TiCl}_{4}+2 \mathrm{CO}$ followed by reduction of TiCl_{4} with Na or Mg
Vanadium	Vanadinite, $\mathrm{Pb}_{5}\left(\mathrm{VO}_{4}\right)_{3} \mathrm{Cl}$	
Chromium	Chromite, $\mathrm{FeCr}_{2} \mathrm{O}_{4}$	$\mathrm{FeCr}_{2} \mathrm{O}_{4}+4 \mathrm{C} \rightarrow \mathrm{Fe}+2 \mathrm{Cr}+4 \mathrm{CO}$
Molybdenum	Molybdenite, MoS_{2}	$2 \mathrm{MoS}_{2}+7 \mathrm{O}_{2} \rightarrow 2 \mathrm{MoO}_{3}+4 \mathrm{SO}_{2}$ followed by either: $\mathrm{MoO}_{3}+2 \mathrm{Fe} \rightarrow \mathrm{Mo}+\mathrm{Fe}_{2} \mathrm{O}_{3}$ or $\mathrm{MoO}_{3}+3 \mathrm{H}_{2} \rightarrow \mathrm{Mo}+3 \mathrm{H}_{2} \mathrm{O}$
Tungsten	Scheelite, CaWO_{4} Wolfamite, $\mathrm{FeMn}\left(\mathrm{WO}_{4}\right)_{2}$	$\begin{aligned} & \mathrm{CaWO}_{4}+2 \mathrm{HCl} \rightarrow \mathrm{WO}_{3}+\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & \text { followed by } 2 \mathrm{WO}_{3}+6 \mathrm{H}_{2} \rightarrow 2 \mathrm{~W}+6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
Manganese	Pyrolusite, MnO_{2}	$\mathrm{MnO}_{2}+\mathrm{C} \rightarrow \mathrm{Mn}+\mathrm{CO}_{2}$
Iron	Hematite, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ Magnetite, $\mathrm{Fe}_{3} \mathrm{O}_{4}$ Limonite, $\mathrm{FeO}(\mathrm{OH})$	$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
Cobalt	Cobaltite, CoAsS Smaltite, CoAs_{2} Linnaeite, $\mathrm{Co}_{3} \mathrm{~S}_{4}$	byproduct of copper and nickel production
Nickel	Pentlandite, $(\mathrm{Fe}, \mathrm{Ni})_{6} \mathrm{~S}_{8}$	$2 \mathrm{NiS}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{Ni}+2 \mathrm{SO}_{2}$
Copper	Chalcopyrite, CuFeS_{2} Chalcocite, $\mathrm{Cu}_{2} \mathrm{~S}$	$2 \mathrm{CuFeS}_{2}+2 \mathrm{SiO}_{2}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}+2 \mathrm{FeSiO}_{3}+4 \mathrm{SO}_{2}$

- Oxides preferred for $1^{\text {st }}$ row and early TMs
- Sulfides preferred for $2^{\text {nd }} / 3^{\text {rd }}$ row and late TMs

Atomic Structure

Atoms consist of
(i) a nucleus (containing protons and neutrons)
(ii) Electron shell
(i) Nucleus:

Positively charged (because of protons)
Very small, $10^{-15} \mathrm{~m}=1 \mathrm{fm}$
Number of protons define the element
(ii) Electron shell:

Planetary Model

Negatively charged (because of electrons)
Electron shell will define the size of the atom $\left(10^{-10} \mathrm{~m}=100 \mathrm{pm}=1 \AA\right.$)
Electrons are extremely small (estimated as $10^{-18} \mathrm{~m}$)
Atoms are mainly empty space!
In chemistry (NOT nuclear chemistry), only electrons are involved in chemical reactions

Electronic Structure of an Atom

How can we study the electronic structure of the atom?
Answer: Through interaction of electromagnetic radiation with matter!

What is electromagnetic radiation?

Electric and magnetic components (mathematical description: Maxwell's equations)

Electromagnetic radiation

Wave Particle Duality of Electromagnetic Radiation

Wavelength and frequency

c = speed of light in the vacuum
$=2.997925 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Diffraction experiment for example: X-ray crystallography

Photon of a particular energy

Energy of a photon: $E=h v$
$\mathrm{h}=$ Planck's constant
$=6.62607 \times 10^{-34} \mathrm{Js}$

Photoelectric effect (Einstein)

Absorption and emission spectra

Bohr Model of the Atom

Two postulates:
(i) In the absence of radiation absorption or emission, electrons stay in a stationary state.
(ii) Absorption occurs only in discrete amounts, corresponding to a change in energy between two stationary states of the electron.

Electronic energies are quantized ($\mathrm{n}=$ principle quantum number)

Energy of an electron in the state n :

$$
\begin{aligned}
& E_{n}=-\frac{m_{e} e^{4}}{8 \varepsilon_{0}^{2} h^{2}}\left(\frac{Z^{2}}{n^{2}}\right)=-R_{H}\left(\frac{Z^{2}}{n^{2}}\right) R_{H}=2.149 \times 10^{-18} \mathrm{~J} \\
& \left|E_{n}-E_{m}\right|=h v=\frac{Z^{2} m_{e} e^{4}}{8 \varepsilon_{0}^{2} h^{2}}\left(\frac{1}{n_{n}^{2}}-\frac{1}{n_{m}^{2}}\right)
\end{aligned}
$$

Bohr Model of the Atom

$$
r_{n}=\frac{\varepsilon_{0} h^{2}}{Z \pi m e^{2}} n^{2}=a_{0} \frac{n^{2}}{Z} ; Q_{0}=\text { Bohr radius }=52.9 \mathrm{pm}
$$

Wave Particle Duality of Subatomic Particles

particle

wave

Electrons, protons, neutrons
?

Certain mass and size

Diffraction experiment for example: neutron or electron diffraction

De Broglie equation

Wavelength of electrons
(and neutrons, protons and any matter)

Diffraction Experiment

Light can be diffracted using a grid or a lattice (crystal lattice in X-ray crystallography) A diffraction experiment is using the wave description.

Particles (neutrons and electrons) can be diffracted.

Electron diffraction through a sheet of crystalline aluminium (historic experiment)

The Schröderinger Wave Equation

$$
\widehat{H} \Psi=E \Psi
$$

Wavefunction
Hamiltonian (operator) Energy

$$
\hat{A} \Psi=c \Psi
$$

Operator
Eigenvalue
Wavefunction (Eigenfunction)

Electronic Wavefunctions?

We want to know the electronic wavefunctions

$$
\widehat{H} \Psi=E \Psi
$$

We can describe the Hamiltonian (energy) operator

Kinetic energy of nucleus Kinetic energy of electron

Potential energy: Electron-nucleus attraction

We need to "solve Schrödinger's equation" to get the allowed wavefunctions

Spherical Polar Coordinate System

Spherical polar coordinates

r is the radius
θ is the colatitude
ϕ is the azimuth

In this coordinate system, the equation describing a spherical surface is simply $f(r, \theta, \phi)=r$
i.e., if $r=3$, a sphere of radius 3

Solving Schröderinger's Equation

$$
\widehat{H} \Psi=E \Psi
$$

1. Conversion from Cartesian Coordinates (xyz) to

Spherical Polar Coordinates (r, θ \{theta\}, $\varphi\{p h i\}$)
2. Separation of variables, three different subfunctions:

$$
\Psi=R(r) \Theta(\theta) \Phi(\varphi)
$$

"solving Schrödinger's equation"

$$
\begin{gathered}
\frac{1}{\mathrm{R}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{8 \pi^{2} m}{h^{2}}+\left(E+\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}\right) r^{2}=\mathrm{u} \text { (} R \text { subfunction) } \\
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)-\frac{v^{2}}{\sin ^{2} \theta}+u \Theta=0(\Theta \text { subfunction }) \\
\frac{1}{\Phi} \frac{d^{2}}{d \varphi^{2}}=-v^{2}(\Phi \text { subfunction })
\end{gathered}
$$

Quantum numbers: $u=1(1+1) ; v=m_{1}$

Solving Schröderinger's Equation

$$
\begin{gathered}
\widehat{H} \Psi=E \Psi \\
\Psi=R(r) \Theta(\theta) \Phi(\varphi)=R(r) Y(\theta, \varphi) \\
\text { radial wavefunction angular wavefunction }
\end{gathered}
$$

Only certain wavefunctions are allowed! Only certain quantum numbers are allowed!

Quantum Numbers

$\mathrm{n}=$ principle quantum number (information about the shell, information about energy) $n=1,2,3,4, \ldots \ldots$

Quantum Numbers

$$
\begin{aligned}
& 1=\underline{\text { angular momentum quantum number }} \\
& \begin{array}{l}
\text { (information about the subshell, } \\
\text { type of orbital, }
\end{array} \\
& 1=0,1,2,3, \ldots .(\mathrm{n}-1)
\end{aligned}
$$

angular momentum of an electron in an orbital: $\quad \hat{L}^{2} \Psi=l(l+1) \hbar^{2} \Psi$

$$
|L|=\sqrt{l(l+1)} \hbar
$$

Orbital names assigned to values of l						
l	0	1	2	3	4	5
orbital label	s	p	d	f	g	h

Quantum Numbers

$\mathrm{m}_{1}=\underline{\text { magnetic quantum number (information about the orientation of the orbital, }}$ or the z-component of the angular momentum)
$m_{1}=0, \pm 1, \pm 2, \pm 3, \ldots . \pm 1$
z-component of the angular momentum of an orbital: $\quad \hat{L}_{z} \Psi=m_{l} \hbar \Psi$

$$
\Psi=R_{n, l}(r) Y_{l, m_{l}}(\theta, \varphi)
$$

Quantum Numbers

$\mathrm{m}_{\mathrm{s}}=\underline{\text { electron } \text { spin quantum number }}$
Orbitals defined by the quantum numbers n , I and m_{1} may contain up to two electrons

Each of the electrons has a unique "electron spin" and is usually denoted as "spin up" \uparrow and "spin down" \downarrow
$\mathrm{m}_{\mathrm{s}}=+1 / 2,-1 / 2$

